Overexpression of a Maize Sulfite Oxidase Gene in Tobacco Enhances Tolerance to Sulfite Stress via Sulfite Oxidation and CAT-Mediated H2O2 Scavenging

نویسندگان

  • Zongliang Xia
  • Kaile Sun
  • Meiping Wang
  • Ke Wu
  • Hua Zhang
  • Jianyu Wu
چکیده

Sulfite oxidase (SO) plays an important role in sulfite metabolism. To date, the molecular mechanisms of sulfite metabolism in plants are largely unknown. Previously, a full-length cDNA of the putative sulfite oxidase gene from maize (ZmSO) was cloned, and its response to SO(2)/sulfite stress at the transcriptional level was characterized. In this study, the recombinant ZmSO protein was purified from E. coli. It exhibited sulfite-dependent activity and had strong affinity for the substrate sulfite. Over-expression (OE) of ZmSO in tobacco plants enhanced their tolerance to sulfite stress. The plants showed much less damage, less sulfite accumulation, but greater amounts of sulfate. This suggests that tolerance of transgenic plants to sulfite was enhanced by increasing SO expression levels. Interestingly, H(2)O(2) accumulation levels by histochemical detection and quantitative determination in the OE plants were much less than those in the wild-type upon sulfite stress. Furthermore, reductions of catalase levels detected in the OE lines were considerably less than in the wild-type plants. This indicates that SO may play an important role in protecting CAT from inhibition by excess sulfite. Collectively, these data demonstrate that transgenic tobacco plants over-expressing ZmSO enhance tolerance to excess sulfite through sulfite oxidation and catalase-mediated hydrogen peroxide scavenging. This is the first SO gene from monocots to be functionally characterized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of the Maize Sulfite Oxidase Increases Sulfate and GSH Levels and Enhances Drought Tolerance in Transgenic Tobacco

Sulfite oxidase (SO) plays a pivotal role in sulfite metabolism. In our previous study, sulfite-oxidizing function of the SO from Zea mays (ZmSO) was characterized. To date, the knowledge of ZmSO's involvement in abiotic stress response is scarce. In this study, we aimed to investigate the role of ZmSO in drought stress. The transcript levels of ZmSO were relatively high in leaves and immature ...

متن کامل

Electrocatalytic oxidation of sulfite Ion at the surface carbon ceramic modified electrode with prussian blue

The redox properties of sulfite ion has been examind using cyclic voltammetry in acetonitrile solvent at the surface of gold, pelatin and glassy carbon electrodes. It has bben found tha, sulfite ion exhibits two electron oxidation peak with EC’ mechanism. A novel chemically modified electrode containing Prussian blue complex and multi wall carbon nanotubes (MWCNs) was achieved on the surface of...

متن کامل

Sulfite oxidase activity of cytochrome c: Role of hydrogen peroxide

In humans, sulfite is generated endogenously by the metabolism of sulfur containing amino acids such as methionine and cysteine. Sulfite is also formed from exposure to sulfur dioxide, one of the major environmental pollutants. Sulfite is used as an antioxidant and preservative in dried fruits, vegetables, and beverages such as wine. Sulfite is also used as a stabilizer in many drugs. Sulfite t...

متن کامل

Improving the efficiency of advanced photocatalytic oxidation process in the presence of sulfite for decomposition of metronidazole from aqueous solutions

 Metronidazole antibiotic is belong to the nitroimidazole family. Non degradability, high solubility in water, toxicity, carcinogenicity and mutagenicity are important concerns related to antibiotics. Therefore, the aim of this study is to apply the new advanced oxidation process of UV/zinc oxide/sulfite (UZS) to degrade metronidazole from aqueous solutions. Methods: In this study, the effect o...

متن کامل

Development of An Immobilized Enzyme Electrode for the Determination of Sulfite Ion

An enzyme electrode was developed using the enzyme sulfite oxidase (EC1.8.3.1) immobilized onto pig intestine. Hydrogen peroxide produced was monitored amperometrically. All experimental parameters such as pH, temperature, buffer constituent concentration, were thoroughly investigated and optimized when appropriate. The response to sulfite concentration was linear in the range 5.2´...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012